
PET: Meeting the demand – The options 
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C6-SugarsCrude oil
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1 on 1 replacement of fossil 

building blocks by green 

equivalents

Mid/long term potential has to be 

cost competitive versus existing oil-

based routes:

nothing gained except ‘being green’

Introduction of new monomers 

such as FDCA

Mid/long term potential has to be 

cost competitive

or better processing/ performance 

versus oil-based alternatives

2TOP course

Bio-PET or PEF ?



Select the right target

Elemental Feedstock composition
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Crude oil carbohydrate (glucose)

C 85-90% 40%

H 10-14% 7%

O 0-1.5% 53%

Oil (CxHy) chemicals biomass (CxHyOz)

e.g. C8H10 (p-Xylene; 91% C; 9% H) e.g. C6H12O6 (glucose)

“under functionalized” “over functionalized” 

Functionalisation

O-introduction

(Depolymerisation &) 

defunctionalisation (O-removal)

CATALYST

PROCESS

CATALYST

PROCESS



MEG from glucose

4



4 steps (= 4 plants !) from glucose to 

ethylene glycol

+ xH2O

http://saylordotorg.github.io/text_the-basics-of-general-organic-and-biological-chemistry/s17-04-reactions-that-form-alcohols.html
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4 steps (= 4 factories !) from glucose to 

ethylene glycol

2

2

2

2

2

2

Ethanol Ethylene

Ethylene oxide
Ethylene glycol (EG)
= Mono EG (MEG)

+ xH2O

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjQxrqlmqnTAhUHbiYKHZDeCy4QjRwIBw&url=http://www.google.com/patents/US20090246430&bvm=bv.152479541,d.eWE&psig=AFQjCNEF-ln88a-snAT6SExNovaZUZRBuQ&ust=1492439930000910
http://saylordotorg.github.io/text_the-basics-of-general-organic-and-biological-chemistry/s17-04-reactions-that-form-alcohols.html
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4 steps (= 4 plants !) from glucose to 

ethylene glycol

2

2

2

2

2

2

Ethanol Ethylene

Ethylene oxide
Ethylene glycol (EG)
= Mono EG (MEG)

180 2x 46 = 92 (51 wt%)

2x 44 = 88

2x 28 = 56 (31 wt%)

2x 44 = 88 (49 wt%) 2x 62 = 124 (69 wt%)

+ xH2O

(162)x

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjQxrqlmqnTAhUHbiYKHZDeCy4QjRwIBw&url=http://www.google.com/patents/US20090246430&bvm=bv.152479541,d.eWE&psig=AFQjCNEF-ln88a-snAT6SExNovaZUZRBuQ&ust=1492439930000910
http://saylordotorg.github.io/text_the-basics-of-general-organic-and-biological-chemistry/s17-04-reactions-that-form-alcohols.html


RAY technology: Superior Carbon Efficiency
Superior economics

+ 2 CO2

OH

OH
Max theoretical 

yield  = 67mol%

EGEG

OH

OH

EG

OH

OH

EG

OH

OH

EG

OH

OH

catalysis

Fermentation, dehydration, 

oxidation, hydration

Max theoretical 

yield = 100%

1 step

4 steps

Current commercial production of bio-based MEG

Avantium RAY process

8

Fermentation

Hydrogenolysis
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Modified from:

pX = p-xylene; C2 = ethylene

53%

87%69%53%

1 step MEG: 1020 kg/ton glucose 

4 steps MEG: 690 kg/ton glucose
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Back of the envelope – best case atom efficiency

29%
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 Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap 
(€50 in case of mature technology step) (*)

 Estimate realistic yield Y in commercial process

 Evaluate mass loss per mol of product

 Assume €350/ton for feedstock (long term large scale contracts)

 Calculate feedstock required per ton final product:

100/Y x 180/ MW P 

4 step ethylene glycol with all steps Y = 95% after purification: 

Feedstock required per ton MEG: 100/81 x 180/124 = 1.79 ton

Production cost: 1.79 x €350 + €250*** + €250*** = €527 + €600 = €1127 / ton

Ethylene: 2 steps with Y = 90%

Feedstock required per ton ethylene: 100/90 x 180/56 = 3.57 ton

Production cost: 3.57 x €350 + €150* + €150* = €1250 + €300 = €1550 / ton

RAYTM 1 step ethylene glycol with Y = 70% after purification: 

100/70 x 180/186 = 1.38 ton

Production cost: 1.38 x €350 + €100 + €100 = €683 / ton + side product credits 10

Very basic “back of the envelope” economics

glucose  chemicals

intermediate scale process (100kt/y) new technology
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Glucose (from corn)
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Glucose Price Estimate (Commercial US)

Prices were calculated using historical data for corn & 

co-products, typical yields for dextrose and co-

products and a processing fee that could reasonably 

be negotiated by a large dextrose consumer. 

5 year average $360/t
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Historical CAPEX versus annual product value

Investment vs Product value
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More detailed first pass techno-economics

(Feasibility phase) – phys prop & factor model 
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A B C D E F G H I J K L M

Consumption Annual Cost Unit Cost

Cost/Unit Factor M$ $/T %

Raw Materials

Ethylbenzene $410.00 $/MT 1.05 T/MT $215,250 $430.50

Total Raw Materials $215,250 $430.50 72.2

Catalysts and Chemicals

Dehydr.cat 14500 $/cuM 0.00014 cuM/MT 1015 $2.03

NSI Inhibitor 6.30 $/kg 0.44 kg/MT 1386 $2.77

TBC Inhibitor 9.50 $/kg 0.02 kg/MT 95 $0.19

Total Catalysts and Chemicals $2,496 $4.99 0.8

Utilities

Electricity 0.045 $/KWH 26.0 kWh/MT 585 $1.17

Fuel 2.50 $/MMBTU 0.32 MMBTU/MT 400 $0.80

Boiler feed water 1.60 $/Mgal 0.00 Mgal/MT 0 $0.00

Cooling water 0.08 $/Mgal 24.57 Mgal/MT 983 $1.97

HP Steam 4.40 $/Mlb 1.65 Mlb/MT 3630 $7.26

MP Steam 4.20 $/Mlb 0.24 Mlb/MT 504 $1.01

LP Steam 3.60 $/Mlb 5.05 Mlb/MT 9090 $18.18

Total Utilities $15,192 $30.38 5.1

Fixed Costs

Basis

Operators 12 210 M$/YR 2520 $5.04

Supervision 1 shift positions, each &        255 M$/YR 255 $0.51

Maintenance 5 % ISBL + 3 % OSBL 7840 $15.68

Plant Overhead 80 % operating labor + 20 % maint. 3788 $7.58

Taxes & Insurance 2 % of fixed capital 3360 $6.72

Total Fixed costs $17,763 $35.53 6.0

OPERATING COSTS $250,701 $501.40 84.1



PET: Meeting the demand – The options 
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FDCA
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PTA bioMEGMEG

Today:
BioPET

20% Plants

Yesterday:
PET

100% 
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PEF
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The stage: Some numbers

Terephthalic acid (TA): a commodity chemical

 Capacity in 2018: 65 Mt (6% growth per year)

 TA market value: €80 Billion

 In China, 1500 m3 CSTR’s are constructed with 1.5 million ton capacity.

15
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Ekato slurry tank shaft with 20m length and 0.7m diameter



1. bio-based paraxylene

 Virent Inc. (Madison, WI). Aqueous phase reforming 

Hydrodeoxygenation of C5/C6 sugars to BTX. Theoretical hydrocarbon 

weight yield is 38%

 Gevo Inc. (Englewood, CO) 

 Anellotech Inc. (Pearl River, NY)

 U of North Carolina at Chapel Hill (UNC)

 Origin Techn. (formerly Micromidas; West Sacramento, CA)

 Avantium (Amsterdam) and The Coca-Cola Company (Atlanta, GA)

18



Diels-Alder chemistry

 The reaction is an equilibrium

 The reverse reaction is called retro-Diels-Alder (rDA)

 The driving force for the DA is the enthalpy gain by forming σ-bonds

– Low temperatures favor the DA

 The driving force for the rDA is the entropy gain from 1 to 2 molecules

– Higher temperatures favor the rDA

19

-H2O
• Ethylene unreactive at low p

• High T needed for dehydration

• Unsubstituted furan gives 

polymers

• Electron donating groups on diene

• Electron withdrawing groups on olefin 

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjtiKPG1qbLAhXIVRQKHXm6AnEQjRwIBw&url=http://www.chemspider.com/Chemical-Structure.236.html&bvm=bv.115339255,d.d24&psig=AFQjCNENT0WYCui_g-_6yGICGlzlDVAE3Q&ust=1457168672213844
https://en.wikipedia.org/wiki/File:RDAGen.png
http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiA_bP91abLAhUDPhQKHR_hDxQQjRwIBw&url=http://www.google.com/patents/US20140235892&bvm=bv.115339255,d.d24&psig=AFQjCNEzEv47q-NBzPvDy11iXExnsCx9tA&ust=1457168443136635


Avantium & Coca-Cola. 

Diels Alder of furans with ethylene

1.5 C6 sugar needed per TPA at 100% yield

 WO2014/065657 (prio 10/2012)  

 To PX: 88% yield of p-xylene (1 step for 3&4 !!); 

 To PTA: 17% yield in 1 step from FDCA (>90% selective); 

 Main challenge: best results obtained after 24 hrs at 200oC

20

+ C2H4

- H2O

+3H2; -2H2O
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Back of the envelope – best case atom efficiency

Modified from:

29% 46%

pX = p-xylene; C2 = ethylene

53%

87%70%53%
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C2 and C4-based pX: 290 kg/ton glucose 

C4-based PTA: 460 kg/ton glucose

C6+C2 based PTA: 620 kg/ton glucose
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Modified from:

29% 46%

pX = p-xylene; C2 = ethylene

53%

87%70%53%
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FDCA: 870 kg/ton glucose 

C2 and C4-based pX: 290 kg/ton glucose 

C4-based PTA: 460 kg/ton glucose
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Back of the envelope – best case atom efficiency
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Paraxylene, PTA, MEG, PET

Sources: ICIS Pricing; ICIS News

U
S

D
/t

Latest PET Prices Not available

Sources: ICIS Pricing; ICIS News

201220102007 2008 2009 2011

*Feedstock prices for US

To produce 1 ton pX from glucose @ 100% yield: 3.5 ton x $360/ton = $1260



 Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap (€50 
in case of mature technology step) (*)

 Estimate realistic yield Y in commercial process

 Evaluate mass loss per mol of product

 Assume €350/ton for feedstock (long term large scale contracts)

 Calculate feedstock required per ton final product:

100/Y x 180/ MW P 

4 + 2 step fructose/glucose to TPA (HMF  DMF + bioethylene (from ethanol)  pX 
TPA) with Y = 60% after purification: 

Feedstock required per ton TPA: 100/60 x 180/142 = 1.80 x 116/142 (C6 fragm) = 1.47 ton

Feedstock required per ton ethylene: 100/90 x 180/56 = 3.57 x 26/142 (C2 fragm) = 0.65 ton

Feedstock required per ton TPA: 1.47 + 0.65 = 2.12 ton

Production cost: 2.12 x €400 + €450* + €450* = €848 + €900 = €1748 / ton

2 step fructose to FDCA with Y = 60% after purification: 

Feedstock required per ton FDCA: 100/60 x 180/156 = 1.92 ton

Production cost: 1.92 x €400 + €200 + €200 = €769 + €400 = €1169 / ton

24

Very basic “back of the envelope” economics

glucose  chemicals

intermediate scale process (100kt/y) new technology



PEF 



Novel Chemical Technologies to 

Transform Renewable Carbon 

Into Chemical 

Building Blocks

DAWN® Technology: 2G glucose

RAY ® Technology: 1 step bio-MEG

VOLTA® Technology: e-chem

Renewable Chemistries

HQ Amsterdam

Science Park and 

Prodock Amsterdam 

(VOLTA)

ChemiePark Delfzijl

(DAWN and MEKONG)

Chemelot (YXY)

Ticker: AVTX

Amsterdam & 

Brussels

Foundational Technology and Expertise

Leading Systems and Services Provider for 

Catalyst R&D

Catalysis

100+ 
patent families

>75% scientists

20+ nationalities

30% female

230

Polyesters

YXY® Technology: FDCA &  PEF

Renewable Polymers

(formerly Synvina)

Applied research with focus on sustainable polymers

With funding from EU, NWO, and Industry (e.g. Avantium, LEGO)

Avantium Corporate Technology 

UvA - Industrial Sustainable Chemistry

http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwiQ1KeAzsbWAhXBKiYKHb_HAOYQjRwIBw&url=http://thenaf.org/naf-programs/american-friends-donate/university-of-amsterdam/&psig=AFQjCNGgZ0cYTta9qaNDS8nl1d3CheYFqQ&ust=1506644416226480


YXY Technology
Conversion
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Carbohydrates

O
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RMF

Dehydration

Green 
Materials/fuels                         

Oxidation

FDCA

Polyesters

Polyamides

Polyurethanes

Polymerization

O
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Maintaining Leadership
Upscaling our technology into world scale production 
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LAB-

SCALE

PILOT PLANT 

SCALE

COMMERCIAL 

SCALE

INDUSTRIAL 

SCALE

2008 2011 - now 2023 expected >2024

Amsterdam Geleen (NL) DELFZIJL (NL) Licensee Site

Kg’s Tons 5000 Tons Industrial Scale

Innovative 

research

Technology 

development

Commercial 

launch of FDCA & 

PEF

Roll-out of FDCA & 

PEF at larger scale

Licensing

1 | Commercial plant for proof of concept & market development

2 | Licensing to rapidly expand market



APPLICATIONS OF PEFAPPLICATIONS OF FDCA

The Scope of FDCA & PEF

29

1 | New molecule with countless applications

2 | PEF has the market size potential due to product properties

3 | Fulfilling market needs & trends

FDCA Polyurethanes

Other polymers

Polyamides

Polyesters (incl. PEF)

Chemical building blocks

PEF

Bottle

Thin Film

Thermoform

Fibers

https://www.biobasedpress.eu/nl/2012/07/waarom-pef-beter-is-dan-pet/


Pilot Plant – Chemelot Geleen (NL)

Avantium Confidential 30
“Prove the process” & “Prove the products” (application development)



O2

O2

O2

O2

O2

O2
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O2

O2

O2

O2

H2O

H2O

H2O

CO2

CO2

CO2

PEF has barrier !

31



Why PEF?
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100% 
Recyclable
Using same 
steps as PET

Shelf Life
Improvement 
Factor vs PET

Hot Fill / Hot Serve
12oC higher Tg

than PET

GAS 
BARRIER

BIOBASED
RECYCLA-

BILITY

HEAT
RESISTANCE

MECHANICS

PEF

100% 
Biobased

Renewable 
material

Light-weighting
60% higher modulus and strength than PET

Trends in packaging:

• Sustainability

• Smaller servings

• Healthier drinks

• Cost reduction

O2 10x
CO2 6-10x 
H2O 3x< 300mL PEF bottles



PEF: the Next Generation Polyester 

 Superior performance over PET:

– O2 barrier: 10x improvement

– H2O barrier: 2x improvement

– CO2 barrier: 4x improvement

 Improved Thermal Stability

– Tg: ~88°C  12°C higher than PET

 Excellent Mechanical Properties:

– Tensile Modulus PEF : 1.6* PET

 Significant reduction in carbon 

footprint

– 70% lower carbon emission

– 65% lower NREU

33

Carbon dioxide

(CO2)

4x

Water (H2O)

2x

Oxygen (O2)

10x



 Improved Crystallization Behavior  No co-monomer needed to 

reduce crystallization rate. 

 PEF exhibits well behaved stress-strain curves and strain hardening 

behavior. 

 PEF rheology comparable with typical PET grades 

 PEF heat distortion temperature is ~12°C higher than PET (77°C PEF 

vs 65°C for PET) 

 Hydrolytic stability similar as PET

 Mechanical recycling including sorting demonstrated (similar to PET)

 Food Contact Safety studies finalized: positive EFSA opinion (2014)

 65-70% reduction in NREU and CO2 

 More reductions expected through process improvements

34

Additional properties



Tensile strength ISO 527-1/-2

35
Thesis Dolmans ITA, RWTH 2013



PEF Paper Bottle with PABOCO

 PABOCO is JV between 

BillerudKorsnäs and ALPLA.

 Avantium will provide fully 

plant-based recyclable

bottle for Carlsberg. 

 Thin layer of PEF will provide 

the Paper Bottle with high

barrier. Mechanical properties   

from the paper.  



PEF Market Traction in High-Value Applications

Multilayer packaging

Replace with single 

material PEF layers, 

reducing cost of 

packaging while enabling 

recycling 

Optical film

Enable thinner LCD/OLED 

displays

Enhanced bottles

PEF in small volume 

CSD/beer bottles or as 

barrier layer providing 

performance and enabling 

recycling



Recycling
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• Optimize end-of-life solutions for PEF polymer

• PEF to PEF recycling is similar to PET recycling

• Mechanical & Chemical recycling

• PEF can be separated from PET by IR sorting

• Effect of PEF in rPET stream:

• PEF has significantly less impact on rPET than 

Nylon or PLA

http://www.epbp.org/download/319/interim-approval-synvinas-polyethylene-25-furandicarboxylate-or-pef 

 European PET Bottle Platform (EPBP) has awarded interim approval to PEF
Polyester in PET (up to 50kt/a)

https://www.biobasedpress.eu/nl/2012/07/waarom-pef-beter-is-dan-pet/


First PEF T-shirts of 100% recycled PEF bottles

Made from 100% 
Recycled PEF

100% Biobased

Conventional 
polyester dyeing 

technology

Conventional 
polyester spinning 

technology

39



Biodegradation of PEF !!
Industrial Composting Conditions (in soil @ 58 °C)

With and without weathering (UV light)

Cellulose reference : 60 days to 90% biodegradation
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• PEF (weathered): 240 days to 90% biodeg. PEF (unweathered): 380 days to 90% biodeg.

• No PET degradation observed (experiments stopped after 270 days)

http://www.ows.be/nl


multi year field trials started Q1 2019

 Mass loss, 

 surface change,

 Mol. weight changes

 micro-organism study

41

GJ Gruter - Industrial Sustainable Chemistry



10 year field trials
Initial results (after 6 months) Amsterdam, Netherlands

42

GJ Gruter - Industrial Sustainable Chemistry

Blank; no soil 6M on top of soil



Why is even slow biodegradation relevant

NOT as designed end-of-life option !!

43

The Guardian



Why is even slow biodegradation relevant

NOT as designed end-of-life option !!

 Take PET fibers from washing textiles as example

 If on average 1 million tons of PET fibers entered the 

environment every year since 1970 and degradation 

takes 500 years, we have 50 million tons of PET fibers in 

the environment today and >100 million tons in 2070. 

 If PEF degradation takes 5 years, we would have 5 

million tons of PEF fibers in the environment today and 

also in 2070. 

44









VOLTA

-

electrochemistry 

platform

CO2 as feedstock

48

http://llchemical.com/


 In Nov 2016, Avantium acquired Liquid Light Inc, 
a Princeton 2009 start-up in which >$35M was 
invested by VC’s to develop CO2 to MEG 
technology. Partners: CocaCola, DeNora, M&G, 
Covestro, BP etc.

49

Electrochemistry at Avantium

http://llchemical.com/


2e-

CO2 as feedstock

-

-

oxalate

+

-

- formate
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4e-

https://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjI_pPT_9rRAhXHShQKHQlYAyUQjRwIBw&url=https://nl.wikipedia.org/wiki/Koolstofdioxide&bvm=bv.144686652,d.d24&psig=AFQjCNG2cD7stw7_m5tAYegLhihe1DkPFA&ust=1485354698941582
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http://www.google.nl/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjx4d-PgNvRAhVEvRQKHUkDApEQjRwIBw&url=http://www.softschools.com/formulas/chemistry/oxalic_acid/330/&bvm=bv.144686652,d.d24&psig=AFQjCNHEBvG9qi7tSyVvDEfSlua-rA2tMw&ust=1485354838116801


CO2 to C2 - Platform Opportunity

51

H

http://llchemical.com/
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CO2 valorization (CCU) via electrochemical routes – Cost drivers.

 Atom efficiency (at 100% yield). 

– CO2 to formate (HCOOH) and to oxalate (HOOC-COOH) ~ 100% weight 

retention 

– CO2 to methanol (CH3OH) ~ 73% weight retention

– CO2 to methane (CH4) ~36% weight retention

 Number of electrons needed (see next slide). 

– Note that an 8 electron reduction at 36% atom efficiency (CO2 to methane) 

requires 8/2 x 100/36 = 12 x more electrons (electricity) than a 2 electron 

reduction at 100% atom efficiency per ton of product produced.  

 Faraday efficiency and overpotential

– The efficiency of the electrons used for desired reaction (versus electrons 

going to side reactions and heat)

 Current Density (mA/cm2)

– The productivity per area of electrode (= Capex ! > 200 mA/cm2 is typically 

required)



 Count # chemical conversion steps: €100/step + €100 per purification/ solvent swap (€50 in 
case of mature technology step) (*) and €200/electrochemical step)

 Estimate realistic yield Y in commercial process

 Evaluate mass loss per mol of product

 Assume €50/ton for feedstock (purification/ transport ?)

 Assume 3500 kWh electricity for a 2 electron reduction of 1 ton of CO2, Assume €0.05/kWh

 Calculate feedstock required per ton final product:

100/Y x 180/ MW P 

1 step CO2 to formate. Faradeic yield > 95% 

Feedstock required per ton Formate: 100/95 x 44/45 = 1.03

Production cost: 1.03 x €50 + €175 + €200 + €100 = €525

2 x formate  oxalate; Y = 90% 

Production cost: (100/90 * 90/90 * €525) + 100 + 100 = €585 + 100 + 100 =  €785

Oxalate  oxalic acid MEG; Y = 90%

Production cost: (100/90 x 92/62 * €785) + €200 + €200 = €1295 + €200 + €200 = €1695
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Very basic “back of the envelope” economics
electrochemistry: CO2  chemicals
intermediate scale process (100kt/y) new technology



CCU: Using CO2 as feedstock: electricity cost

2e  €175/ton CO2
=€175/ton formate



2e  €175/ton CO2
=€175/ton formate

2e  €175/ton CO2
= €280/ton CO

CCU: Using CO2 as feedstock: electricity cost



2e  €175/ton CO2
=€175/ton formate

2e  €175/ton CO2
= €280/ton CO

6e  €525/ton CO2
= €725/ton methanol 

CCU: Using CO2 as feedstock: electricity cost



2e  €175/ton CO2
=€175/ton formate

2e  €175/ton CO2
= €280/ton CO

8e  €700/ton CO2
= €1925/ton methane

CCU: Using CO2 as feedstock: electricity cost

6e  €525/ton CO2
= €725/ton methanol 



CO  business case



50% 

GA

90% 

GA
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 Glycolic acid – Lactic acid 

copolymers with 50-90% 

GA content for barrier film

 Increased barrier to O2

and water vapor with

increasing GA content 

 Barriers even better than

PEF !! 

 Polymers with > 75% GA 

are Low Tg fully

biodegradable polymers

 Polymers with higher LA 

content are industrially

compostable

Gruter et al. ACS Appl Pol Mat 2020

Oxalic acid  glycolic acid (€3500/ton)

Glycolic acid (GA) polymers for biodegradable barrier film



Elements regarded as critical against risk criteria of supply 
constraints, demand growth and geographical spread. 
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 Huge challenges ahead for chemistry to enable transition from linear to 

circular economy. 

 Our chemical future is in an embryonic stage !!

 Biomass – biorefineries – biobased products: we are only at the 

beginning…

 CO2 as feedstock

 Wind/Solar – Electrochemistry, energy storage,…

 Scarcity of elements: In, Ag, Sb, Pt, P….  development of alternatives

 Many others…
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Is Chemistry a mature discipline from which radical 

innovation cannot be expected anymore ?
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